マトリクス計算拾遺

SHIMURA Masato jcd02773@nifty.ne.jp

2009年3月27日

目次

 ケーリー・ハミルトン
 フィボナッチ数
 シュメール人の √2
 References
 概要 マトリクスの計算の覚え書き

1 ケーリー・ハミルトン

マトリクスの特性方程式 $\phi(\lambda)$ の λ に A を代入すると $\phi(A)=0_n$ となる。 (ケーリー・ハミルトンの定理) $I+\lambda_1A+\lambda_2A^2+\lambda_3A^3=0_3$

C3
2 _1 1
_1 2 1
1 _1 2

ch1 C3 I A A^2 A^3 +-----+
|1 0 0 | 2 _1 1 | 6 _5 3 | 20 _19 7|
|0 1 0 | _1 2 1 | _3 4 3 | _7 8 7| NB. A^n
|0 0 1 | 1 _1 2 | 5 _5 4 | 19 _19 8|
+-----+
|_6 | 11 | _6 | 1 | NB. Lamda
+-----+
|_6 0 0 | 22 _11 11 | _36 30 _18 | 20 _19 7|
| 0 _6 0 | _11 22 11 | 18 _24 _18 | _7 8 7| NB. A^n * Lamda
| 0 0 _6 | 11 _11 22 | _30 30 _24 | 19 _19 8|
+------+

cayley_hamilton C3

$$I + \lambda_1 A + \lambda_2 A^2 + \lambda_3 A^3 = 0_3$$

ここで box の間に内積演算 (+/ . *) を挿入するには一度ボックスを開いて原型に戻した方が 計算しやすい

特性方程式は次のようにも表すことができる。この表現はルベリエ・ファディーエフ法で用いられている。

1.1 Script

power_matrix=: 4 : 'x&mp y' NB. A^n
NB. Usage: A power_matrix ^:(i.3) A

2 フィボナッチ数

```
NB. -Cayley_Hamilton Inverse Matrix------
ch_sub0=: 3 : ';{:char_lf y ' NB. find lamda
NB. mk A^n
ch_sub1=: 3 : 0
TMP0=.(<=/~i.# y), <"2 y power_matrix ^:(i. # y) y
TMP0,TMP1,: TMP0 * L:0 TMP1=. {@> ch_sub0 y
)
cayley_hamilton=:3 : 0
TMP=. ch_sub1 y
({: TMP),(<'='),< +/ > {: TMP
)
```

2 フィボナッチ数

$$F_n = \begin{cases} 0 & if \ n = 0 \\ 1 & if \ n = 1 \\ F_{n-1} + F_{n-2} & if \ n > 1 \end{cases}$$

Matrix form:

3 シュメール人の $\sqrt{2}$

```
144 233 0.618026
```

233 377 0.618037

377 610 0.618033

610 987 0.618034

987 1597 0.618034

固有値に黄金比が出る。そして $k \to \infty$, のとき $\frac{f_{k+1}}{f_k}$ は黄金比に近づく。

黄金比はオームの法則のオームが 1835 年に唱えたもので、古代ギリシャやローマでは用いられていない。バイオリニストのクライスラーは自作の小品を一昔前の架空の作曲家の曲としていた。

+-+----+

3 シュメール人の $\sqrt{2}$

以下はシャトランによる。紀元前 2000 - 3000 年にシュメール人が用いていた。スミルナの *Théon* が 2 世紀に再発見したという。

$$\begin{cases} x \leftarrow x + 2y \\ y \leftarrow x + y \end{cases}$$

反復により $\frac{x^2}{y^2}$ が 2 に近づく

$$\begin{cases} u_0 &= \begin{bmatrix} 1\\1 \end{bmatrix} \\ u_1 &= \begin{bmatrix} 1 & 2\\1 & 1 \end{bmatrix} u_{k-1}, \quad k \ge 1, \quad \supset \subset \quad u_k = \begin{bmatrix} x^k\\y^k \end{bmatrix} \end{cases}$$

$$(\%/"1 a)$$
 ,. a=. $(1 2 ,:1 1)&(+/ . *)$: $(i.10) 1 1$

3 2 1.5

7 5 1.4

17 12 1.41667

41 29 1.41379

99 70 1.41429

239 169 1.4142

4 References 5

```
577 408 1.41422
1393 985 1.41421
3363 2378 1.41421
```

マトリクスの2を他の数を変更すれば他の平方根を求められる

4 References

F. シャトラン/伊理正夫、由美訳「行列の固有値」 Springer/Tokyo 1993/2003

Download

J Language http://www.jsoftware.com

Script http://homepage3.nifty.com/asagaya_avenue/

APL&J APLAssociation Workshop