関数のスクリプト-その0(ノート)

SHIMURA Masato jcd02773@nifty.ne.jp

2009年1月26日

目次

1	関数定義入門	2
2	多項式 polinomial	4
3	差分と微分	5
4	テーラー展開	8
5	Jのテーラー関数	11
付録 A	接続詞 ボンド、コンポーズ (&) とアトップ (@)	15
付録 B	フックとフォーク	15
付録 C	Reference	17

概要

関数のJ言語の Tacit 定義に関するレビューである。

1 関数定義入門 2

1 関数定義入門

1.1 & @ hook fork

	I	
$f(x) = x^2 + 1$	f1=:>:@*:	f1 >:i.5
		2 5 10 17 26
$f(x) = \sqrt{x+5}$	f2=:%:@(5:+])	(5&+)4 11 20 9 16 25 f2 4 11 20 3 4 5
f(x) = 4x	f3=:*&4	f3 >: i.5 4 8 12 16 20
f1, f2, f3	f4=:f1,f2,:f3	6j2&": f4 >:i.5 2.00 5.00 10.00 17.00 26.00 2.45 2.65 2.83 3.00 3.16 4.00 8.00 12.00 16.00 20.00
$f(x) = x^2 - y^2$	f5=:-&*:	^&2] 3 4 5,: 1 2 3 9 16 25 1 4 9 3 4 5 f5 1 2 3 8 12 16

1 関数定義入門 3

	611 0/ 0	
$\sqrt{x+y}$	f11=:%:@+	1 2 2 5 4 2 2 4 2
		1 3 6 f11 3 6 10
		2 3 4
x^2	f12=: *:@+	
$(x+y)^2$		f12 3 4 5 NB. monad
-		9 16 25
		1 2 3 f12 3 4 5 NB. dyad
		16 36 64
		10 30 04
\sqrt{xy}	f13=: %:@*	
V ^{xy}	113 /0.6	1 2 3 f13 4 8 12
		2 4 6
		2 4 0
2 . 2	C140*	
$x^2 + y^2$	f14=: +&*:	1 2 2 544 4 2 42
		1 2 3 f14 4 8 12
		17 68 153
f(x) = (x - y)(x + y)	f15=:+ * -	
		2 4,: 3 6
		2 4
		3 6
		2 4 f15 3 6
		_5 _20
x(x-1)	f16=: [* <:	
		3 6 ,: 2 5
		3 6
		2 5
		f16 3 6
		6 30

$x + x^2$	f17=:] + *:	
		f17 3 6
		12 42
$x\sqrt{y}$	f18=:[* %:@]	
		3 5 f18 4 9
		6 15

1.2 &.

$$x(f \&. g)y \iff g^{-1}(g(x) f g(y))$$

$\int (\sqrt{x} + \sqrt{y})^2$		
	f6=: +&.%:	4 9 ,: 16 25
		4 9
		16 25
		4 9 f6 16 25
		36 64
$\sqrt{x^2-y^2}$		
	f7=: -&.*:	3 5 f7 2 4
		2.23607 3

2 多項式 polinomial

$$(x - x_1)(x - x_2)(x - x_3)(x - x_4)$$

$$= x^4$$

$$- x^3(x_1 + x_2 + x_3 + x_4)$$

$$+ x_2(x_1x_2 + x_1x_3 + x_1x_4 + x_2x_3 + x_2x_4 + x_3x_4)$$

$$- x(x_1x_2x_3 + x_1x_2x_4 + x_1x_3x_4 + x_2x_3x_4)$$

$$+ x_1x_2x_3x_4$$

$$(x - x_1)(x - x_2)(x - x_3)$$

$$= x^3$$

$$- x^2(x_1 + x_2 + x_3)$$

$$+ x(x_1x_2 + x_1x_3 + x_2x_3)$$

3 差分と微分 5

 $-x_1x_2x_3$

NB. polinomial

ppr=: +//.@(*/)

cfr=: [: ppr/ - ,. 1:

$p(x) = 2x^2 + 1$	$p(x) = 2x^2 + 1$ NB. 1 0 2&p.
$q(x) = x^2 - 4x - 3$	$q(x) = x^2 - 4x - 3$ NB3 _4 1&p.
$p(x)q(x) = 2x^4 - 8x^3 - 5x^2 - 4x - 3$	1 0 2 ppr _3 _4 1
	_3 _4 _5 _8 2
$(x-5)(x+2)(x-3) = 30 - x - 6x^2 + x^3$	
	cfr 5 _2 3
	30 _1 _6 1
	NB. 入力符号が逆

3 差分と微分

3.0.1 差分

差分 (D:) は Δ の大きさを指定する。

cube=: ^&3 "0

;("1),.({@> 0.1 0.01 0.001 0.0001) cube D:(1)(L:0) 1 2 3 4 5

1 2 3 4 5

3.31 12.61 27.91 49.21 76.51 NB. 0.1

3.0301 12.0601 27.0901 48.1201 75.1501 NB. 0.01

3.003 12.006 27.009 48.012 75.015 NB. 0.001

3.0003 12.0006 27.0009 48.0012 75.0015 NB. 0.0001

3.0.2 微分

cube d.1] 1 2 3 4 5

3 12 27 48 75

3 差分と微分 6

微分の階数は d. の引数で与える。

|: cube d. (i.4) 1 2 3 4 5

1 8 27 64 125 NB. x³

3 12 27 48 75 NB. 3x²

6 12 18 24 30 NB. 6x

6 6 6 6 NB. 6

 $cube =: x^3$ は多項式でも定義できる。

|: 0 0 0 1&p. d.(i.4) 1 2 3 4 5

1 8 27 64 125

3 12 27 48 75

6 12 18 24 30

6 6 6 6 6

cube d.1] 1 2 3 4 5

3 12 27 48 75

cube D.(1) 1 2 3 4 5

3 12 27 48 75

0 0 0 1&p. D.(1) 1 2 3 4 5

3 0 0 0 0

0 12 0 0 0

0 0 27 0 0

 $0 \quad 0 \quad 0 \quad 48 \quad 0$

0 0 0 0 75

3 差分と微分 7

3.0.3 Example

$$f(x) = x^5 - x^3 + 1$$

$$\dot{f}(x) = 5x^4 - 3x^2$$

$$\ddot{f}(x) = 20x^3 - 6x$$

$$\ddot{f}(x) = 60x^2 - 6$$

1 0 0 _1 0 1&p.
$$f(x) = x^5 - x^3 + 1$$

378

$$\dot{f}(x) = 5x^4 - 3x^2$$

522.644

522

522

4 テーラー展開 **8**

4 テーラー展開

4.1 power series

power series expantion ベキ級数展開

$$y = a_0 + a_1 x + a_2 x^2 + \dots = \sum_{n=0}^{\infty} a_n x^n$$

次のようなものがイメージできる。

- 1. 折り畳めるへら鮒釣りの継ぎ竿
- 2. ロシアの入れこ人形マトリョーシカ
- 3. 小編成の貨物列車

4.2 テーラー展開

4.2.1 *e*

!	0! 1! 2! 3! 4!	
		! i.5
		1 1 2 6 24
e		
	1 1 1 1	(% & !) i.5
	$e \approx 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \dots = \sum_{n=0}^{\infty} \frac{1}{n!}$	1 1 0.5 0.166667 0.0416667
		^t.i.5
		1 1 0.5 0.166667 0.0416667
		. / (0/ 0 1) ÷ 10
		+/ (% & !) i.10
		2.71828

4 テーラー展開 9

 e^{x} $e^{x} \approx 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!}$ $6 ((]^{i}.@[),: !\&i.@[) 5$ 1 5 25 125 625 3125 1 1 2 6 24 120 $ex=: +/@((]^{i}.@[) %/"0 !&i.@[) 15 ex 5 148.38$ NB. e^{5} を 15 項表で展開する (x = 15) 項程度で収束する。

4.3 *sin*, *cos*

$$e^{x} \approx 1 + \frac{x}{1!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \dots + \frac{x^{n}}{n!}$$

$$sinx = x - \frac{x^{3}}{3!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!}$$

$$cosx = 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!}$$

6 ex0 0.5

1 0.5 0.25 0.125 0.0625 0.03125

1 1 2 6 24 120

%/ 6 ex0 0.5

1 0.5 0.125 0.0208333 0.00260417 0.000260417

sin,cos のテーラー展開の係数の符号は後出の weighted taylor(t:) に任そう。円関数は収束が早いので 6 項までとする。

(1&o.) t: i.6

0 1 0 _1 0 1

4 テーラー展開 10

$$sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!}$$

1&o. w_taylor 0.5 8 NB. 8 項まで

+----+

 $| 0.479426 | 0.479426 | 0 \ 0.5 \ 0 \ _ 0.0208333 \ 0 \ 0.000260417 \ 0 \ _ 1.5501e_6 |$

+----+

sin 0.5 sum taylor taylor

$$cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}$$

2&o. w_taylor 0.5 8

+----+

|0.877583|0.877582|1 0 _0.125 0 0.00260417 0 _2.17014e_5 0|

+-----+

cos 0.5 sum taylor taylor

w_taylor=: 1 : 0

NB. Usage: 1&o. u 0.5 6

NB. value 0.5 / 6 jisuu

if. 1=# y do. X0=. 6

else. 'X0 Y0'=. |. y end.

f=: u

TMP0=:f t: i. X0

TMP1=:X0 ex0 Y0

 $(u \{.y); (+/ TMP2); TMP2=: TMP0 *"1 %/ TMP1$

)

5 Jのテーラー関数

Jのテーラー関数として t. T. t:の3種類が用意されている。

5.1 t.(taylor Coefficient)T. (taylor approximation)

5.1.1 e, sin, cos

Jの t. は無蓋の小編成の貨物列車のようで、台車だけが用意されており、積み荷は自分で積むこととなる。

こととなる。		
	e	
		^t. i.6 NB.6項まで
		1 1 0.5 0.166667 0.0416667 0.00833333
		+/ ^t. i.6
		2.71667
		^T.6] 1 NB.6 項まで
		2.71667
		^m 74
		^T]1
		2.71828
T. は項数を指定する。	sin	
	SIII	1&o. t. i.6
		0 1 0 _0.166667 0 0.00833333
		+/ (0.5^i.6)* 1&o. t. i.6
		0.479427
		10 7 67 0 5
		1&o. T. 6] 0.5
		0.479427
		1&o. 0.5
		0.479426

2&o. t. i.6
1 0 _0.5 0 0.0416667 0

(0.5^i.6)* 2&o. t. i.6
1 0 _0.125 0 0.00260417 0

+/ (0.5^i.6)* 2&o. t. i.6
0.877604

+/ 2&o. T. 6]0.5
0.877604

2&o. 0.5
0.877583

5.2 Weighted taylor

$$f(x) = e^{x}$$
 so $f(0) = 1$
 $f'(x) = e^{x}$ so $f'(0) = 1$
 $f''(x) = e^{x}$ so $f''(0) = 1$
 $f^{3}(x) = e^{x}$ so $f^{3}(0) = 1$
 $f^{4}(x) = e^{x}$ so $f^{4}(0) = 1$
 $f^{5}(x) = e^{x}$ so $f^{5}(0) = 1$

formula for the 5th degree approximation to f(x) is

$$f(x) = f(0) + f'(0) + \frac{f''(0)x^2}{2!} + \frac{f^3(0)x^3}{3!} + \frac{f^4(0)x^4}{4!} + \frac{f^5(0)x^5}{5!}$$

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} + \frac{x^{5}}{5!}$$

$$e^{1} = 1 + 1 + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!}$$

sin t: i.6 0 1 0 _1 0 1

cos t: i.6 1 0 _1 0 1 0

5.3 テーラー関数の応用

5.3.1 polynomial

	I
$1 + 2x + x^2$	f=: 1 2 1 &p.
$1 + 3x + 3x^2 + x^3$	g=: 1 3 3 1 &p.
$1 + 2x + x^2$	
$1 + 3x + 3x^2 + x^3$	(f*g) t. i.8
X	
$1 + 5x + 10x^2 + 10x^3 + 5x^4 + x^5$	1 5 10 10 5 1 0 0
	(f i.8),.(g i.8),.
	((f*g) t. i.8)&p. i.8
	f g f*g
	1 1 1
	4 8 32
	9 27 243
	16 64 1024
	25 125 3125
	36 216 7776
	49 343 16807
	64 512 32768

5.3.2

t. はどのように使うか、どこまで汎用性があるか

複素数	6&o.@j. t. i.6 NB. cosh 1 0 _0.5j6.12323e_17 0 0.0416667j_1.02054e_17 0
$\frac{1}{e^x}$	%@^ t. i.6 1 _1 0.5 _0.166667 0.0416667 _0.00833333
lnx	^. t. i.6 domain error
\sqrt{x}	%: t. i.6 domain error %:t.i.6

付録 A 接続詞 ボンド、コンポーズ (&) とアトップ (@)

接続詞は動詞を連結して複数の作用を一度に行う。(複合動詞 持って走る)接続詞には右引数を一個取る単項型と x u&v y と動詞の左右に引数を取る両項型がある。

次の Fork と組み合わせれば相当複雑な構文も関数のみで表現できる。

A.1 Bond Compose &

& は数字と動詞を連結するときは bond, 動詞と動詞を連結するときは compose という。 Bond(&) の機能は数字を連結することである。(Atop(@) はエラー) 0&{ 1&{

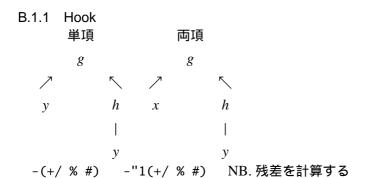
 $(\sim p) \land (\sim q)$

x v&u y is (v x) u (v y)

A.1.1 Atop

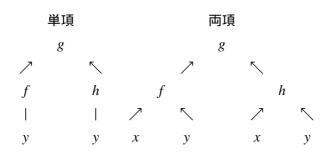
単項は&と同一でありどちらを用いても良い。

付録 B フックとフォーク


2の動詞の組み合わせはフック、3がフォークである。

動詞を連ねると Train になる。コンテナの貨物列車である。J は後ろから動詞を 3 組ずつ取って

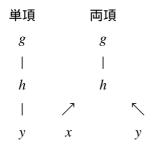
いき、最後が2になればその部分はフックになる。


B.1 フック Hook

洋服掛けのフックである。右に先に一つの作用をしてから次にかかる。フックは複雑なので余り用いない。

B.2 Fork

mean=:+/#%のように引数を用いない動詞の定義ができる。


$$(+/\%#) >: i.10$$

5.5

B.3 Capped fork

[: u v は Hook や Fork を掛けないで、通常の後ろから前の定義通りに実行したいときに用いる。

付録 C Reference 17

付録 C Reference

Milan Ondrus [Array processing with J] J wiki articles K.E.Iverson [Calculous] http://jsoftware.com/Jwiki