§ 1 理論比率との適合性のモデル選択

AICO=:_2:*mIIO=:[:+/]*^.@[NB. 左引数に理論比率を与えたモデルの MLL と AIC AIC1=:4 :'(<:#y.)+((%+/)y.)AICO y.' NB. 最尤推定モデルの AIC

]Y=:480 420		ある病院で生まれた男児と女児の数を表わ
480 420		す(架空の)データである。
]X0=:0.5 0.5		出生数を男女同じであるとしたときの理論
0. 5 0. 5	7	比率をX0という変数に挿入する。
Y*^. X0]MLL=:+/Y* [^] . X0	XOの対数値にYを掛けその合計値で、理論
332, 711 291, 122	623, 832	モデルの下での最大対数尤度。
2*MLL	_ -+:+/Y*^. X	上の結果の合計に(-2)を掛け値で、理論モ
1247. 66	1247, 66	デルの情報量規準(パラメータ数は0)
X AICO Y	1247.00	上の一連の演算結果と同じで、「AICO」は理
		論モデルの下での情報量規準を出力する。
1247. 66		
]X=: (%+/)Y		観測結果から得求めた比率(最尤推定値)、
0. 533333 0. 466667		「(%+/)Y=Y%+/Y」はフックである。
X mIIO Y	X AICO Y	X を左引数に入力した「mll0」と「AlC0」の演
621, 831	1243, 66	算結果で
((%+/)Y)AICO Y	1243. 00	│ │最尤推定モデルの下での最大対数尤度の
((/////////////////////////////////////		設元程定でデルの下での最大対象元度の (-2)倍の値が得られる。
1243. 66		
<:# Y		Yのアイテム数から 1 を引いた値で、推定し
1		たパラメータの数である。
(<:#Y)+((%+/)Y)AI	CO Y	最大対数尤度の(-2)倍にパラメータ数1の
1244, 66		2倍の値を加えている。
X AIC1 Y		以上の一連の演算結果と同じで、最尤推定
1244. 66		モデルの下での情報量規準の値である。
(1. 06 1%2. 06) AICC) Y	女1に対して男1.06という出生性比で、こ
		の理論モデルの下での AIC の値が算出され
1244. 93		ている。最尤推定モデルのAICより小さい。
(UAICO=:_2:*[:+/]	*[:^.%@#]) Y	「AICO」という関数の左引数を常に等確率に
		とると、「UAICO」という関数型定義の片側関
1247. 66		数は、一様分布のモデルの下での情報量規
1277.00		準を与える。

§ 2 分割表データの特殊モデルへの分解

統計数理研究所の『日本人の国民性調査』で、「もう一度生まれ変わるとしたら、男と女の どちらに生まれてきたいか」という質問への回答結果が以下の表に示してある。

生まれ変わりの希望の性(『日本人の国民性調査』) a 調査 女のサンプル 男のサンプル 計 男に 男に 女に 女に 年次 1958 614 36 492 210 1352 0. 243 (45.4)(2.7)(36.4)(15.5)(100)1963 89 796 2503 0.318 1099 519 (43.9)(31.8)(20.7)(100)(3.6)1968 1264 73 695 768 2800 0.471 (45.2)(2.6)(24.8)(274)(100)1973 1833 111 1067 1281 4292 0.487 (42.7)(2.6)(24.9)(29.8)(100)1978 749 37 445 559 1790 0.508 (41.8)(2.1)(24.9)(31.2)(100)1983 889 48 490 712 2139 0.542 (22.9)(33.3)(100)(41.6)(2.2)1988 750 37 348 605 1740 0.589 (2.1)(43.1)(20.0)(34.8)(100)1993 736 28 293 650 1707 0.653 (38.1)(43.1)(1.6)(17.2)(100)1998 545 28 210 479 1262 0.648

一般に、2×2分割表の形で与えられるデータに対するモデルは

(2.2)

(43.2)

•	p_{11}	p_{12}	$p_{11} + p_{12} + p_{21} + p_{22} = 1$
	p_{21}	p_{22}	

のように、3つのパラメータで記述できる。さらにこのモデルを

よつし	_ 3	<u> </u>	フメータ	Cac	小じさる。	こうりにこのて	ニアルを	
	p_{11}	p_{12}	$= a \times$	p	0	$+(1-a)\times$	pq^*	$p(1-q^*)$
	p_{21}	p_{22}		0	(1-p)		$(1-p)q^*$	$(1-p)(1-q^*)$

(16, 6)

(38.0)

(100)

のように、「対角型モデル」と「独立型モデル」の加重平均の形に分解する。ここで

$$p = p_{11} + p_{12}$$
, $a = (p_{11}p_{22} - p_{12}p_{21})/p(1-p)$
 $q = p_{21} + p_{22}$, $q^* = (q - ap)/(1-a)$

	2.		- ,	, ,	,		
例えば	<u> </u>	<u>8年の</u>	データに対し	ては		į	
	45. 4	2. 7	$=0.243 \times$	48. 1	0	+0.757×	L
	36. 4	15. 5	データに対し [*] =0.243×	0	51.9		L
	-			-			Ī

44. 5	3. 6
48. 1	3. 8

のように分解できる。これより、aの値は 0.243"と推定できる。表の右端に示した数値が、 このような a の値である。 40 年の間に a の値 $^25\%弱から<math>^65\%$ まで増大し、女性の回答で 「次も女に」の比率が高くなり、男性優位の社会が崩壊しつつある状況が読みとれる。

Q58=:2 2\$45. 4 2. 7 36. 4 15. 5	Q83=:2 2\$41.6 2.2 22.9 33.3		
Q63=:2 2\$43.9 3.6 31.8 20.7	Q88=: 2 2\$43. 1 2. 1 20 34. 8		
Q68=:2 2\$45.2 2.6 24.8 27.4	Q93=:2 2\$43.1 1.6 17.2 38.1		
Q73=:2 2\$42.7 2.6 24.9 29.8	Q98=:2 2\$43.2 2.2 16.6 38		
Q78=:2 2\$41.8 2.1 24.9 31.2			
decomp=:3 :0	2×2分割表のデータを「対角型モデル」と		
p=. +/{. y [q=. +/{. "1 y=. y. %100	「独立型モデル」の加重平均の形に分解する 関数を定義している。		
a=. ". 0. 3": ((*/@}{.)1 . *//. y)%p* p	因数とた我している。		
r=. ". 0. 3": (p, p) */r, r=. (q-a*p) % a			
a; (2 2\$100*p, 0, 0, p); (a); 100*r			
)			
decomp Q58	decomp Q83		
0. 243 48. 1	0. 542 43. 8 0 0. 458 39 4. 8		
0 51.9 48.1 3.8	0 56.2 50 5.6		
decomp Q63	decomp Q88		
0. 318 47. 5 0 0. 682 42. 2 5. 3	0. 589 45. 2		
0 51.9 48.1 3.8	0 54.8 48.6 6.2		
decomp Q68	decomp Q93		
0. 471 47. 8	0. 653 44. 7 0 0. 347 40. 1 4. 6		
0 51.9 46.9 5.3	0 55.3 49.6 5.7		
decomp Q73	decomp Q98		
0. 487 45. 3	0. 648 45. 4		
0 54.7 48.6 6.1	0 54.6 47.1 7.5		
decomp Q78			

0. 508	43. 9 0	0. 492	39. 6 4. 3
	0 54.7		50.65.5

§ 3 分割表データの従属モデルと独立モデルに対する最尤推定

MLED=: %+/@, NB. 分割表の従属モデルのパラメータの最尤推定

MLEI=: (+/"1*/+/)@(%+/@,) NB. 分割表の独立モデルのパラメータの最尤推定

]C=:2 2\$45 15 25 15	2×2の分割表のデータを変数 C に挿入して
45 15	表示している。
25 15	
]B=: (%+/@,)C	Cの各要素を要素の総数 100 で割った値を
0. 45 0. 15	示している。
0, 25 0, 15	
MLED C	上と同じ結果で、従属モデルのパラメータ の最尤推定値を与える。
0. 45 0. 15	の取ん推定値を子える。
0. 25 0. 15	
]E=:+/"1 B	Bの1-セル(横方向)に対する合計値を求め てEに挿入。
0. 6 0. 4	C L 1〜1甲八。
]F=:+/ B	Bのアイテム(縦方向)に対する合計値を求
0.7 0.3	めてEに挿入。
(+/"1*/+/)B	「E=:+/ " B=0.60 0.4」と「F=:+/B=0.7
0. 42 0. 18	0.3」の外積を作成している。
0. 28 0. 12	
MLEI C	上と同じ結果で、独立モデルのパラメータ の推定値を与える。
0. 42 0. 18	TO DESCRIPTION OF THE PROPERTY
0. 28 0. 12	

···········「統計学」メモ ···········<u>·</u>

右のような 2×2 分割表のデータが与えられた場合、まず独立モデルの 2 つのパラメータ p, q に対する最尤推定は、

а	b	<i>a</i> + <i>b</i>
С	d	c + d
a + c	b+d	n

【2×2分割表】

$$P = (a+b)/n$$
, $Q = (a+c)/n$

のように与えられる。

さらに、従属モデルのパラメータ $^{p_{11},p_{12},p_{21},p_{22}}$ に対する最尤推定も

$$P_{11} = a/n$$
, $P_{12} = b/n$, $P_{21} = c/n$, $P_{22} = d/n$ $(n = a + b + c + d)$

のように与えられる。

§ 4 分割表モデルの最大対数尤度(MLL)と情報量規準(AIC)

MLLI=:[:+/[:,]*^.@MLEI NB. 2×2分割表の独立モデル最大対数尤度

MLLD=:[:+/[:,]*^.@MLED NB. 2×2分割表の従属モデル最大対数尤度

AICI=:2:*([:+/<:@\$)-MLLI NB. 分割表の独立モデルの情報量規準(AIC)

| AICD=:2:*([:<:+/@\$)-MLLD_NB.分割表の従属モデルの情報量規準(AIC)|

]A=:MLEI C	+/, C*^. A	独立モデルのパラメータの推定値をAに挿	
0. 42 0. 18	_128. 388	│入。このAという値の対数にCを掛けた結果 │ │の各要素の合計である。	
0. 28 0. 12			
]A1=: (MLLI=: [:+/	[:,]*^.@MLEI)C	上と同じ結果で、独立モデルの下での最大 対数尤度を与えている。	
128.388	+:P2-A1	0 のタニン りかこ 1 ナヨいナ はの A st ナ DO	
]P2=:+/<:\$ C	+ · PZ-A1	Cの各ランクから1を引いた値の合計をP2	
2	260. 775	│に挿入、「P2-A1」の2倍を与えている。	
AICI C		上の結果と同じで、分割表の独立モデルの 下での情報量規準を与えている	
260, 775		トとの情報重視学を与えている	
]B=:ML	+/, C*^. B	│ 従属モデルのパラメータの推定値を B に挿 │	
0. 45 0. 15	_127. 504	入。このBという値の対数にCを掛けた結果 の各要素の合計である。	
0. 25 0. 15			
]B1=: (MLLD=:[:+/	[:,]*^.@MLED)C	上と同じ結果で、従属モデルの下での最大 対数尤度を与えている。	
_127. 504		719000000000000000000000000000000000000	
]P3=:<:*/\$ C	+∶P3–B1	Cの要素の数から1を引いた値をP3に挿入、	
3	261, 008	さらに「P3-B1」の2倍を与えている。	
AICD C		上と同じ結果で、分割表の従属モデルの下	
		での情報量規準を与えている。	
261. 008			

------「統計学」メモ ------

pq	p(1-q)	p
(1-p)q	(1 - p)(1 - q)	1- p
q	1- <i>q</i>	1

【独立モデル】

•	•		
	$p_{_{11}}$	$p_{_{12}}$	p
	$p_{_{21}}$	p_{22}	1- <i>p</i>
	q	1- q	1

【従属モデル】

従属モデルの場合の最大対数尤度は

 $MLLD = a \log(a/n) + b \log(b/n) + c \log(c/n) + d \log(d/n)$ (n = a + b + c + d)

さらに独立モデルの場合の最大対数尤度も、次のように与えられる。 $\mathit{MLLI} = a\log PQ + b\log P(1-Q) + c\log(1-P) + d\log(1-P)(1-Q)$

(P = (a + b)/n, Q = (a + c)/n; n = a + b + c + d)

§ 5 平均が等しいとするモデルの情報量規準

var=:[:mean*:@(-mean=:+/%#) NB. 分散を与える片側形関数(Tacit)

AIC2=:4:+#@;*1:+[:^. (o. 2) "_*var@;

NB. 等平均を仮定したモデルの情報量規準(AIC)を与える片側形関数(Tacit)

M1=:11 13 12 9 2 2 1 0 0 1 0 0

M2=:10 7 14 5 1 11 11 6 14 13 11 14 13 15 7 13 9 2

【M1 は水戸泉という幕内力士の平成 3·4 年の 12 場所の番付位置のデータで、0 は三役】

【M2 は水戸泉の平成5年以降18場所の番付位置のデータ】

<u>【M2 は水戸泉の平成 5 年以降 18 場所の番付付</u>	立置のデータ】
]V=:var Y=: ; M1;M2	M1とM2を結合したデータの分散の値をV
27. 8456	に挿入している。
^. o. 2*V	上の V という値に 「o. 2=2π」を掛けてから
5. 16455	対数(^.)をとっている。
4+ (#M) *1+^. o. 2*V	上の値に1を加えてから「(#Y)=30」を掛け
188. 937	て、最後に4を加えている。
AICM2 M1;M2	上の一連の演算結果で、平均が等しいとす
188. 937	 るモデルの AIC の値を算出している。

------「統計学」メモ ------

標本数が必ずしも同じでないような2組の観測値

$$\mathbf{x} = \begin{pmatrix} x_1, x_2, \dots, x_m \end{pmatrix}$$
 は正規分布 $N(\mu_{01}, \sigma_0^2)$

$$\mathbf{y} = (y_1, y_2, \dots, y_n)$$
 は正規分布 $N(\mu_{02}, \sigma_0^2)$

に従って分布している(分散の値は共通であるが未知)とする。

$$\mu_{01} = \mu_{02} (= \mu_{0})$$
とするモデル(M1)の下での $(\mu_{0}, \sigma_{0}^{2})$ に対する最尤推定は

$$\mu = \frac{1}{m+n} \left\{ \sum_{i=1}^{m} x_i + \sum_{j=1}^{n} y_j \right\} , \quad \sigma^2 = \frac{1}{m+n} \left\{ \sum_{i=1}^{m} (x_i - \mu)^2 + \sum_{j=1}^{n} (y_j - \mu)^2 \right\}$$

のように与えられ、情報量規準も AIC11 = (m+n) $\{1+\log[2\pi\sigma^2]\}$ + 2×2

のように与えられる。

§ 6 平均が異なるとするモデルの情報量規準

ssdev=:+/@*:@(-mean) NB. 偏差平方和を与える関数

AIC3=:3::'6+n*1+^.o.2*(+/ssdev&>v.)%n=.+/#&>v.'

]Q=:ssdev&>M=:M1;M2	M1, M2 のデータの偏差平方和を求めている。
308. 25 307. 111	
]K=:#&> M	M1, M2 のデータの個数を変数 K に挿入して
12 18	いる。
] V=: (+/Q) %N=:+/K	上の2種類の結果を足してからNで割って、
20. 512	分散の最尤推定値をVに挿入している
^. o. 2*V	上の V という値に 「o. 2=2π」を掛けてから
4, 85889	対数をとっている。
6+N*1+^. o. 2*V	上の値に1を加えてから「N=30」を掛けて、
181. 767	最後に6(=2×パラメータ数)を加えている。
AICM3 M1;M2	上の一連の演算結果で、平均が異なるモデ
181. 767	ルの場合のAICの値を算出している。
AICM2 M1;M2	平均が同じとするモデル(M1)に対しての
188. 937	AICの値「188.937」よりかなり小さく、モデ
	<u>ル(M2)が選択され、検定結果と合致する。</u>

------「統計学」メモ ------

 μ_{01} $^{\mu}$ 02 と仮定したモデル(M21)の下での $^{\mu_{01},\mu_{02},\sigma_{0}}$ に対する最尤推定は

$$\mu_{1} = \frac{1}{m} \sum_{i=1}^{m} x_{i}, \mu_{2} = \frac{1}{n} \sum_{j=1}^{n} y_{j}, \sigma^{2} = \frac{1}{m+n} \left\{ \sum_{i=1}^{m} (x_{i} - \mu_{1})^{2} + \sum_{j=1}^{n} (y_{j} - \mu_{2})^{2} \right\}$$

で与えられるから、情報量規準も $AIC21 = (m+n)[1+\log(2\pi\sigma^2)] + 2 \times 3$

のようになる。(この式での σ_0^2 に対する推定値 σ_0^2 は、AIC11の場合での推定値 σ_0^2 とは異なっていることに注意)

§ 7 平均も分散も異なるとするモデルの情報量規準

var=:[:mean*:@(-mean=:+//#) NB. 分散を与える関数

AIC4=:8:+[:+/(#*1:+[:^. (o. 2)"_*var)&>

NB. 平均も分散も異なるモデル (M22) の情報量規準を与える関数

var M1]A=: ((o.	2)"_*var) M1		$M1$ の分散の値に 2π を掛けて A に挿入してい
25. 6875	161, 399			る 。
^. A		2)"_*var) M1		Aの対数値を与えている。
5. 08388	5. 08388			
(#;1:+[:^	. (o. 2) "_*var) M1		M1 のデータ数 m と 「1+^. A」の値をボックスに
12 6. 0838	38]	分けて表示している。
D1=: (#*1:+[:	^. (o. 2) "_*va	r) M1		「D1=:m*(1+^. A)」という値を算出している。
73, 0066				
]B=: ((o. 2) "_*var)	^. B		$M2$ の分散の値に 2π を掛けて B に挿入しその
M2		4. 67471		対数値を算出している。
107 202		4. 07471		
	:+[:^. (o. 2)"	_*var)M2		「D2=:n*(1+^.B)」という値を算出している。
102. 145				
(#*1:+[:^	. (o. 2) "_*var)&> M1:M2		 D1 と D2 を同時に算出している。
73. 0066 102.	· · · —	, 0,		J. C. J. Charatta and C. C.
8++/D1, D2				D1 と D2 の合計に「8=2×4」を加えている。
183. 151				
AIC4 M1;M	2			上と同じ結果で、平均も分散も異なるモデル
183. 151				(M22)の情報量規準(AIC)を与えている。

------「統計学」メモ ------

 μ_{01} $\neq \mu_{02}$ 且つ σ_{01} $\neq \sigma_{02}$ と仮定したモデル(M22)の下での μ_{01} μ_{02} σ_{01} σ_{02} σ_{02}

に対する最尤推定は

$$\mu_{1} = \frac{1}{m} \sum_{i=1}^{m} x_{i}, \mu_{2} = \frac{1}{n} \sum_{j=1}^{n} y_{j}, \sigma_{1}^{2} = \frac{1}{m} \sum_{i=1}^{m} (x_{i} - \mu_{1})^{2}, \sigma_{2}^{2} = \frac{1}{n} \sum_{j=1}^{n} (y_{j} - \mu_{2})^{2}$$

で与えられるから、情報量規準も

$$AIC22 = m\{1 + \log(2\pi\sigma_1^2)\} + n\{1 + \log(2\pi\sigma_2^2)\} + 2 \times 4$$

のようになる。

§ 8 回帰モデルの最尤推定と残差平方和

| regb=:[%.1:,.|:@] NB. 回帰係数の最尤推定を与える(両側)関数。

regq=:[:+/[:*:[-(1:,.|:@])+/.*regb NB. 残差平方和を与える(両側)関数

TM=:_8.9 _4.2 0.5 2.2 2.4	TMは札幌・山形・東京・大阪・鹿児島の5		
LA=:43.05 38.25 35.68 34.68 31.57	都市の1月の最低気温のデータ。LAとALは 各都市の緯度、経度と標高のデータである。		
L0=:141. 33 140. 35 139. 77 135. 52 130. 55			
AL=:17. 2 152. 5 5. 3 23. 1 4. 2			
]Y=:LA, :AL	「Y=:N,:H」というアレイ(リストでも構わ		
43. 05 38. 25 35. 68 34. 68 31. 57	ない)をYに挿入している。		
17. 2 152. 5 5. 3 23. 1 4. 2			
\$Y1=:1,. :Y	Y を「 :」で転置した結果に、「,.」で1を横に		
5 3	付加して Y1 に挿入((5 3)のアレイ)		
TM %. Y1	「TM%.Y1」は「(T+/ .*Y1)%.(:Y1)+/ .*Y1」		
37. 6381 _1. 06343 _0. 00661594	という行列算(最小2乗解を与えている)。		
]B=:TM regb Y	上と同じ演算結果で、回帰係数の最尤推定		
37. 6381 _1. 06343 _0. 00661594	をBに挿入して表示している。		
]P=:Y1+/ .*B	Y1 に回帰係数の推定値を掛けて、い		
_8. 25632 _4. 04699 _0. 340111 0. 605556 4. 0	わゆる「予測値」を与えている。 3786		
TM-P	TMから予測値を引いた値で、いわゆ		
_0. 643683 _0. 153009 0. 840111 1. 59444 _1.	63786 る「残差」を与えている。		
+/ TM-P	 残差の合計値は「0」になる。		
1. 40998e 14			
+/*:TM-P	残差を平方してから合計した値で、いわゆ		
6. 36837	る「残差平方和」を与えている。		
TM regq Y	 上の一連の演算結果と同じで、「regq」は残		
6. 36837	差平方和を与える関数である。		
TM regq LA TM regq LO	TM regq AL 1変数だけによる回帰モ		
7. 01911 40. 6853 84	デルではLA がダントツ。 1. 5453		
TM regq LA, :LO TM regq LA, :AL	TM regq LO,:AL 2変数でもLAと組合せた		
5. 32201 6. 36837 40	モデルの残差が小さい。		
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			
)数を増やせば残差平方和は小さくなる!)。		

§ 9 回帰モデルの情報量規準と「tー値」

regaic=:4 :' (+:1+#(,:>a:), y.)+n*1+^. o. 2*(x. regq y.)%n=. #x.'

NB. 回帰モデルの情報量規準 AIC の値を与える。

regv=:[:(<0 1)&|:[:%.[:(-/@\$*|:+/.*])1:,.|: NB. 「regt」の補助関数

regt=:regb%[:%:regq*regv@] NB. 回帰係数の最尤推定に対する「t-値」

TM regaic LA	TM regaic	LA, :L0	TM regaic LA,LO,:AL
21. 8854	22. 5014		22. 5665
TM regaic LO	TM regaic	LA, : AL	AICの値の最も小さいのは、 TMだけによるモデルである。
30. 6715	23. 3989		│ IM だけによるモナルである。 │
TM regaic AL	TM regaic	LO, : AL	
34. 3286	32. 6514		
]V=:regv LA		LAに1を付加	した行列の積に「(データ数)ー
6. 10381 0. 00449551			ス)」を掛けてから、逆行列を求 要素を∀に挿入している。
]B=:TM regb LA		TMのLAによる	る回帰モデルの最尤推定値をB
38. 2955 _1. 08867		に挿入して表:	示している。
]Q=:TM regq LA		TMのLAによる	る回帰モデルの残差平方和をQ
7. 01911		に挿入して表:	示している。
B % %:Q*V		同心を粉のは、	を $\sqrt{Q^{igmt \ V}}$ で割った値である。
5. 85067 _6. 12868		四州宗教の恒	でいる。
TM regt LA		上と同じ結果・	で、回帰係数の「t ー値」を求め
5. 85067 _6. 12868		ている。	
TM regt LA, :AL		変数 AL の t-値	≦は0に近い値で、推定結果が
4. 84208 _4. 95496 _0. 452068			ことを示唆している。
TM1=: 8.4 2.6 4.9 1.2 1.0	$0.2 \ 0.1 \ 2.1 \ 0.7$	Z.5	

TM1=:_8.4 _2.6 _4.9 1.2 1.0 _0.2 0.1 2.1 0.7 2.5

LA1=:43.03 38.16 36.40 35.41 34.58 35.10 36.35 34.41 34.19 33.35

LO1=:141.20 140.54 138.12 139.46 138.24 136.58 136.38 135.31 134.04 130.23

AL1=:17. 2 38. 9 418. 2 6. 5 14. 1 51. 1 5. 7 23. 1 8. 7 3. 9

TM1 regaic LA1	TM1 regaic LA1,:LO1	TM1 regaic LA1,LO1,:AL1
40.8355	42.835	26.018
TM1 regaic LO1	TM1 regaic LA1,:AL1	2{TM1 regt LA1,LO1,:AL1
52.2596	25.3699	0.931937
TM1 regaic AL1	TM1 regaic LO1,:AL1	LA1 と AL1 で回帰したときのモデ
56.0655	52.0254	ルの AIC の値が最小である。

§ 10 多項式回帰モデル

pregb=:]%.1:,.>:@i.@# NB. 多項式回帰モデルのパラメータに対する最尤推定

pregv=:4 :'+/*:y.-t+/ .*y.%.t=.(>:i.#y.)^/i.>:x.'

NB. 多項式回帰モデルの残差平方和を与える。

pregaic=:4 :' (+:>:x.)+n*^. (x.pregv y.)%n=.#y.'

NB. 多項式回帰モデルの情報量規準(AIC)を出力する関数。

ER=:40. 2 42. 8 45. 3 52. 2 57. 0 64. 3 69. 7		75.6 79.0 電子レンジの普及率(83~92)	
81. 3			
:X=:1 (>:@i.@#@]^/[:i.>:@[) ER		1 次の多項式回帰モデルの独立変数の行列	
		をXに挿入し、転置した形で表示している。	
11111111	1		
1 2 3 4 5 6 7 8 9 1	0		
1 2 3 4 3 0 7 0 9 1	U		
1 pregb ER		ER を X で (行列の) 割算し、1 次の多項式回帰	
32. 92 5. 05818		モデルの最尤推定値を与えている。	
2 pregb ER		2次の多項式回帰モデルの最尤推定値を与え	
32. 9867 5. 02485 0. 0030303		ている。	
3 pregb ER		3次の多項式回帰モデルの最尤推定値を与え	
40. 84 1. 94064 1. 51	329 0. 0915307	ている。	
1 pregv ER	3 pregv ER	残差平方和を求めていて、2次から3次のと	
28, 1847	2. 30232	ころで急激に小さくなっている。	
2 pregv ER	4 pregv ER		
28, 1799	2, 30182		
1 pregaic ER	3 pregaic ER	AICの値を求めていて、3次のところで最小	
		になっている。	
14. 362	_6. 68667		
2 pregaic ER	4 pregaic ER		
16, 3602	4. 68886		
GDP=:51 54 56 61 59 65 73 93 101 116 126 134 157 NB. 10 億シンガポールドル(81-			

93)		
1 pregv GDP	3 pregv GDP	1 次モデルから 2 次モデルのところで、残差 平方和が急激に小さくなっている。
1228. 57	165. 225	
2 pregv GDP	4 pregv GDP	
182. 707	154, 809	
1 pregaic GDP	3 pregaic GDP	情報量規準(AIC)の値は、2次のところで最小
63. 1325	41. 0506	になっている。
2 pregaic GDP	4 pregaic GDP	
40, 3582	42, 2042	

§ 1 1 自己回帰モデルの独立変数行列と従属変数ベクトルの生成

mean0=:-+// NB. 与えられた時系列データの平均を 0 にする

aindep=:[:|."1[{."1((,>:)@#@]-[,0:)\$] NB. 独立変数行列を出力

adep=:} NB 自己回帰モデルの従属変数ベクトルを出力する関数

MIN3=:6.7 4.6 5.2 4 5 6.7 13.4 9.1 6.6 4.6 7.7 6.1 4.6 9.2 6.2 4.3 MIN3=:MIN3, 3.5 5.6 6.9 8 6.3 8.4 5.4 4.2 3 10.4 8.4 6.3 12 10.4 7.9 NB. 東京地区の平成9年3月の最低気温のデータ (\$ MIN3); (mean=:+/%#) MIN3 東京地区平成9年3月の最低気温のデ	<u></u>
NB. 東京地区の平成9年3月の最低気温のデータ	ータ
	ータ
(\$ MIN3); (mean=:+/¼#) MIN3 東京地区平成9年3月の最低気温のデ	ータ
	-
31 6.79677 データ数は「31」で平均は「6.79677	I
]T=:5{. MIN3]T0=:-mean0 T MIN3 からの先頭の5つを取り出し、TI	- に挿入
し、平均を0にしてT0に挿入している	5 。
5 (, >:)@# TO 2((, >:)@#@]-[, 0:)TO TOの長さ「5」とそれに「1」を加えた数。	<u></u> を出力。
また3はデータ数から左引数を引いた	
5 6 3 6 6 はデータ数に 1 を加えた値。	
2(((,>:)@#@]-[,0:)\$])T0	ブルを
作っている。	
1. 6 _0. 5 0. 1 _1. 1 _0. 1 1. 6	
_0.5 0.1 _1.1 _0.1 1.6 _0.5	
0.1_1.1_0.1_1.6_0.5_0.1	
3(((,>:)@#@]-[,0:)\$])T0 T0というリストから2行6列のテーコ	ブルを
作っている。	
0.5 0.1 1.1 0.1 1.6 0.5	
2 aindep TO 3 aindep TO 直上で求めたテーブルから、左引数ダ	 分の行
を取り出して左右を入れ替えている。	
_0.5 0.1 0.1 _0.5 1.6 り、平均を0としたデータから、「独立	変数行
0.1 _1.1	
2 adep T0 3 adep T0 「adep=:}.」は従属変数ベクトルを出ま 関数である。	ハ9つ
1.6_0.5 0.1	
\$ 2 adep (mean0 MIN3) 全データの長さは31 であるから、「ad	-
適用した結果は長さ29のリスト 29	
\$ 2 aindep (mean 0 MIN3) ルになる。	, ,
29 2	

§ 12 自己回帰モデルの最尤推定・残差平方和・情報量規準

aindep=:[:|."1[{."1((,>:)@#@]-[,0:)\$] NB.独立変数行列

adep=:}. NB. 自己回帰モデルの従属変数ベクトルを出力する関数

aregb=:adep%.aindep NB. 自己回帰モデルの最尤推定

aregq=:[:+/[:*:adep-aindep+/ .*aregb NB. 自己回帰モデルの残差平方和

 $aregaic=:4:'(+:\#(,:>a:),y.)+n*^{.}(x.aregq y.)%n=.(\#y.)-x.'$

NB. 自己回帰モデルの情報量規準

JAI: O a indon TO	
]AI=:2 aindep T0	平均を0としたデータ TO から、独立変数行
_0. 5 0. 1	列を作ってAlに挿入している。
0. 1 _1. 1	
_1. 1 _0. 1	
]AD=:2 adep TO	TOの末尾から左引数の個数の要素を取り去
0.1_1.1_0.1	り従属変数ベクトルを求め AD に挿入
AD %. AI	従属変数ベクトルを独立変数行列で割算し
0. 164712 0. 304299	た結果で、自己回帰モデルの最尤推定値を
	与えている(平均を0としているので定数項
]B=:2 aregb TO	の係数は推定する必要がない)。
0. 164712 0. 304299	
+/*: (AD-AI+/ .*B)	「残差平方和」を求めている。
1. 02523	
]Q=:2 aregq TO	上と同じ結果で、「aregq」で「残差平方和」を
1. 02523	求め0に挿入している。
(+:2)+N*^. Q%N=: (#T0)-2	Q/Nの対数値にNを掛けた値に、パラメータ
0. 778903	数の2倍を加えている。
2 aregaic TO	上と同じ結果で、「aregaic」は自己回帰モデ
0. 778903	ルの情報量規準(AIC)を出力する。
1 aregaic TO	左引数を「1」とした場合の情報量規準の値
_0. 493507	で、「2」のときより小さい。

2 aregaic meanO MIN3	4 aregaic meanO MIN3	6 aregaic meanO MIN3
53. 7334	50. 5962	45. 3801
3 aregaic mean0 MIN3	5 aregaic meanO MIN3	

52. 8281	46. 1935	

§ 13 分散分析モデルの最尤推定と偏差平方和

avdev=:-mean@, [mean=:+/# NB. 全体の平均からの偏差を与える関数 avmle=:mean@avdev&.>@(|:;]) NB. 分散分析モデルの最尤推定を与える。 avq=:[:+/[:*:@, avdev NB. 全体の変動に関する偏差平方和を与える関数 avq_cr=:|.@\$*[:([:+/*:)&>avmle NB. 行と列の変動に関する偏差平方和

RST	avdev RST	RSTは、3種の肥料と4つの地域での作物
25 18 21 24	5 2 1 4	の収穫量に関する(架空の)データ。
17 13 16 14	_3 _7 _4 _6	全体の平均である「20」からの偏差を与え
24 20 26 22	4 0 6 2	ている。
(:;])RST		「 :」で転置したものとそのままのテーブ ルをボックスで囲みながら連結している。
25 17 25 18 21		
24 24		
18 13 17 13 16	6	
20 14	mean@avdev&. >@(]	
21 16 24 20 26		上のテーブルのアイテムに関する平均を ・
24 14		ボックスごと求めていて、行と列効果であ
22		る。
3 \ DOT		
:;])RST		先の結果と同じで、「avmle」というプログ
$\begin{bmatrix} 2 & 5 & 2 & 3 & 1 \\ 2 & 6 & 9 & 1 \end{bmatrix}$ E=:avmle RST		ラムの演算結果をEに挿入している。
3 0 JE=.aviii e RSI		上の結果の最初の要素が 行効果後の要素
$\begin{bmatrix} 2 & -5 & 2 & -3 & 1 \\ 3 & & 0 & & \end{bmatrix}$	@{. E	が列効果のパラメータである。
2 _5 3		
>@{: E		
2 _3 1 0		
avq RST		「avdev」を実行した結果の各要素の平方和
212		で、全変動の平方和を与えている。
avq_cr RST	+/ avq_cr RST	行と列に関する変動の平方和を与えてい
152 42	212	る。
av_table=:3 :0		av_table RST
p=. ([:mean]-mean@,)L	:0(:;])y.	
cr=. (\$&>@ .*;@([:+/	*:)&>)p	

s=. cr, (v-+/cr), v=. +/*:, (-mean@,) y. t=. t, +/t=. cr, q=. */cr=. <: \$ y. (<|:ss, tt,:(ss=.}:s)%tt=.}:t),:<({:s), {:t}}

§ 1 4 分散分析モデルの情報量規準

avqcr=:avq-(0:, |.,+/)@avq_cr NB.4種類のモデルに対する残差平方和

avssr=:#.@[{avqcr@] NB. 4種類の残差平方和から、左引数で指定した値を出力

avaic=:4: '(4++:+/<:x. #\$y.)+n*1+^. (o. 2)*(x. avssr y.)%n=.\$, y.'

NB. 分散分析モデルの情報量規準を与える(両側)関数

(0:, .,+/)@avq_cr_RST	「avq_cr」の結果を転置したものに合計値が
0 42 152 194	接続され、さらに先頭に0が付加される。
(avq-(0:, ., +/)@avq_cr) RST	 全変動の値から、上で求めたベクトルを引
212 170 60 18	いた結果である。
avgsr RST	上と同じ結果で、「avqsr」という関数からの
212 170 60 18	結果である。
1 0 avssr RST	直上の内容に「#.@[{」を接続したプログラ
	ムが「avssr」で、「#.1 0」は10進数では2で、
60	2軸(通常の3番目)が取り出される。
1 0 avaic RST	「10」によって、行効果だけを指定したモデ
	ルでの情報量規準を与えている。
61. 3678	「0 1」によって、列効果だけを指定したモデ
0 1 avaic RST	ルでの情報量規準を与えている。
75. 8652	「0 0」によって、行効果も列効果もないとし
0 0 avaic RST	たモデルの情報量規準を与えている。
72. 5147	「1 1」によって、行効果も列効果もあるとい
1 1 avaic RST	うモデルの情報量規準が与えられる。
52. 9201	4つのモデルのなかでは、このモデルの AIC
	が最小である。

§ 15 判別分析モデルの平均ベクトルと分散共分散行列の推定

damean=: (+/\#)"1&> NB. ボックス形で与えられたデータの平均ベクトル

dav=:[:(]+/ .*|:)(-mean)"1 NB. 行と列の変動に関する偏差平方和を与える

| davarm=:([:+/dav&>)%[:+/#@|:&> NB. 分散共分散行列を与える関数|

MIN2=. 2. 1 1. 5 2. 9 3 3. 3 3. 7 4. 7 4. 2 4. 8 4. 9 3 2. 9 1. 1 1. 8

MIN2=:MIN2, 2 3.7 5 3.3 0.5 0.9 0.5 _1.4 _0.4 2.3 3.9 8.4 7.2 6.7

 $\texttt{MIN3} = : 6.7 \ 4.6 \ 5.2 \ 4 \ 5 \ 6.7 \ 13.4 \ 9.1 \ 6.6 \ 4.6 \ 7.7 \ 6.1 \ 4.6 \ 9.2 \ 6.2 \ 4.3$

MIN3=:MIN3, 3. 5 5. 6 6. 9 8 6. 3 8. 4 5. 4 4. 2 3 10. 4 8. 4 6. 3 12 10. 4 7. 9

MAX2=:9.9 8.6 9.1 8.4 10.1 9.4 11.7 10.2 12.5 12.3 12.6 10.4 9.5 10.8

MAX2=: MAX2, 11. 2 9. 3 11. 8 10. 9 9 12. 1 13. 9 4. 6 9. 6 13. 1 16. 1 18 13. 4 13. 9

MAX3=:10+10 1.3 _2.3 1.4 5.2 5.6 11.9 5.7 4.6 4.3 10.2 4.7 3.7 8.4 1.2 _3.6

MAX3=: MAX3, 10+2. 4 3. 4 4. 4 3 5. 7 3. 1 _0. 4 0. 1 5. 9 7. 5 1. 9 7. 2 7. 4 15. 1 4. 6

A=:MIN2,:MAX2 [B=:MIN3,:MAX3

NB. 東京地区の平成9年の2月と3月の最低気温と最高気温のデータ

]M=:damean A;B]M0=:-:@+/damear	1 行目、2 行目がそれぞれ A、B の平均ベク
3. 08929 11. 1571	A;B	トルMで、それらの中点を与えている。
6. 79677 14. 6323	4. 94303 12. 8947	
dav L:O A;B		AとBに「dav」を実行した結果をボックス
		形で出力している。
134. 867 101. 817	187. 47 190. 273	
101. 817 184. 009	190. 273 479. 068	、これらの合計をQに挿入して表示してい
		వ ం
]N=:#@ :&> A;B]Q=:+/dav&> A;B	AとBそれぞれのデータ数と分散共分散行
28 31	322. 336 292. 09	列の合計を Q に挿入している。
	292, 09 663, 076	
Q % +/N]V=:davarm A;B	A、B 2種類のデータの分散共分散行列の加
5. 46333 4. 95068	5. 46333 4. 95068	重平均を出力。「davarm」は2(多)次元データの対の分散共分散行列を出力する。
4. 95068 11. 2386	4. 95068 11. 2386	

§ 16 線形判別関数

dacoef=:[:-/damean %."1 2 davarm NB. 線形判別関数の係数を与える関数 dapoint=:dacoef*[:-:@+/damean NB. 線形判別関数の判別点を与える関数 davalue=:3:0

NB. 線形判別関数の値を与える関数

(p=.dapoint y.); c=.dacoef y. (+/(c*>{.y.)-p);+/(c*>{:y.)-p

-/ M %. V	_		線形判別関数の係数を求めてCに	
	_0. 663111 _0. 0171071		、し表示している。	
_0. 562971				
0. 765649				
]MO=:-:@+/ damea	n A;B		Bの平均ベクトルの中点を求	
4. 94303 12. 8947		めて	(、MOに挿入し表示している。	
C * MO		MO (3	こ線形判別関数の係数 C を掛け	
_3. 27778 _0. 220591		てい	いる。	
]P=:dapoint A;B		上と	:同じ結果で、2つのグループに	
_3. 27778 _0. 220591		判別	するときの判別点を与える。	
]5{. "1 DA=:C * A	L			
_1. 39253 _0. 994667				
_0. 169361 _0. 147121	_0. 155675 _0. 1437 _0. 172782			
]5{. "1 DB=:C * B	}			
_4. 44285 _3. 05031	_3. 44818	6		
_0. 342143 _0. 193311	_0. 131725 _0. 195021 _0. 26002	8		
5{. "1 DA-P				
1. 88525 2. 28311	1. 35476 1. 28845 1. 08951			
0. 0512308 0. 07347 0	0. 0649165 0. 0768915 0. 0478093			
5 {. "1 DB-P				
_1. 16507 0. 227467	_0. 1704 0. 625334 _0. 037777	5		
_0. 121551 0. 0272808	3 0. 0888665 0. 02557 _0. 039437	1		
>5 {. L:0 DV=:deva	lue A;B		この値の正負により、AとBの	
1. 93648 2. 35658	1. 41967 1. 36534 1. 13732		グループへ判別される。	

1, 28662 0, 254748 0, 0815333 0, 650904 0, 0772	146
5{."1 DV=:davalue A;B	最初(最後)の行がA(B)というデ
0.40047 0.50004 0.44757 7.50500 0.05000	ータの判別関数の値で、A(B)で
9. 18047 8. 52291 8. 11757 7. 52532 8. 65803	は最後(最初)の要素が負(正)であ
1. 66826 _3. 81065 _6. 90476 _3. 3963 _1. 0498	るから、間違って判別されること
	になる
DV>0	
1111111111111111111111111	1111111
10000000000100000000000	0 1 0 0 0 0 1 0
DV>0	
1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1
0000000000000000000000000	0 0 0 0 0 0 0 0

§ 17 ベクトル型データの相関行列

var=:[:mean"2*:@(-"1(mean=:+/%#)"2)

stand=:3 : '(y.-k\$mean y.)%(k=.\$y.)\$%:var y.'

corm=:3 :'((|:S)+/ .*S)%#S=.stand y.'

A=:93 58 94	B=:84 61 88		A 子, B	A 子, B 子, C 子のバスト・ウェスト・ヒップ	
		91			
] ABC=: A, B,	:C stand A	ABC		ABC は3次元データが3本	
93 58 94	1. 41421	0 1.	22474	1 列目がバスト、2 列目がウェスト、3	
84 61 88	_0. 707107	1. 22474 _1.	22474	列目がヒップ。これを「stand」により	
84 55 91	0. 707107	1. 22474	0	平均 0、分散が 1 に基準化。	
corm ABC			相関行	ラ列列を求めている。バストとヒップの │	
			問でに	は正の相関が高く、ウェストとヒップの	
1 0	0.866025				
	0.000020	間には負の相関がみられ、バストとウェス			
0 1	_0. 5		の間で	では無相関である。	
0.866025 _0.5	1				

S=:160+5 0 6 4 8 4 8 9 9 6 5 3 4 7 9 9 6 8 5 7 10 8 8 3 T=:50+3 _3 5 6 5 4 4 5 3 6 3 _1 2 3 8 1 0 3 4 0 5 7 6 2 B=:80+6 4 6 10 7 7 14 8 6 4 5 4 7 6 9 4 6 8 8 8 8 4 5 3 W=:50+6 2 14 10 6 7 8 7 8 7 5 9 8 9 10 10 9 10 12 8 10 12 12 10 H=:90+2 2 _1 5 _3 2 7 2 3 0 0 0 0 _2 0 0 _3 _2 0 _1 0 2 4 _2 STL=:S,.T,.B,.W,.H NB. ミスユニヴァース代表の身長・体重・バスト・ウェスト・ヒッ mean STL 身長・体重・バスト・ウェスト・ヒップの 平均を個別に求めている。 166, 292 53, 375 86, 5417 58, 7083 90, 7917 var STL 身長・体重・バスト・ウェスト・ヒップの 5. 87326 6. 65104 5. 66493 6. 4566 5. 66493 分散を個別に求めている。 \$L:0 STL;S=:stand STL STLというデータと、それを基準化したSの 24 5 24 5 形を示している(5次元データが24本)。 0″∶mean S var S 「stand」という関数を適用した結果は、確か に平均は0、分散は1になっている。 0 0 0 0 0 11111]R=:corm STL

 1
 0. 542494
 0. 326565
 0. 372425
 0. 0115011

 0. 542494
 1
 0. 3131
 0. 449056
 0. 241926

 0. 326565
 0. 3131
 1
 0. 0605705
 0. 424285

 0. 372425
 0. 449056
 0. 0605705
 1
 0. 0649716

 0. 0115011
 0. 241926
 0. 424285
 0. 0649716
 1

§ 18 主成分分析

| Itr=:3:'(v%%:+/*:v=.(>{.y.)+/.*t);t=.>{:y.' NB. 「mev」の補助関数

 $mev=:3:'(+/(y.+/.*v)%v*#v), v=.>{.itr^:_(1;y.)'}$

NB. 最大固有値と固有ベクトルを出力する関数

red=:3:'y.-({.r)**/~}.r=.mev y.' NB.「evs」の補助関数

evs=:4:'mev"2(red^:(i.x.))y.'NB.左引数の個数分の固有値と固有ベクトル

\$ ABC	\$R3=:corm ABC	ABCは3次元データが3本挿入されている。	
3 3	3 3	R3 は ABC というデータの相関行列	
>{:itr R3	>{:itr^:2 R3	「itr」は、最大固有値に対応する固有ベクト	
0. 866025 0. 5 1	0.866025 0.5 1	ルに順次収束する「mev」の補助関数	
mev R3		「mev」は相関行列 R3 の最大固有値と固有べ	
0.0.0100500.050550.0.505105		クトルを出力する関数である。	
2 0. 612372 _0. 353553 0. 707107			
mev red R3		「red」はR3という行列を変形し、「mev」によ	
1 0.5 0.866025 2.84	4262e_14	り次の固有値と固有ベクトルを出力。	
\$ STL	\$R=:corm STL	STL は 24 人の 3 次元データ	
24 5	5 5	RはSTLというデータの相関行列	

>{:itr R

0.0115011 0.241926 0.424285 _0.0649716 1 mev R

2. 14898 0. 521033 0. 570928 0. 419977 0. 399578 0. 25792

【「mev」により、相関行列Rの最大固有値と固有ベクトルを出力している】

mev red R

1. 30735 _0. 236935 _0. 104455 0. 483214 _0. 488062 0. 679155

【「red」により、R という行列を変形、「mev」により次の固有値と固有ベクトルを出力】 mev"2 red^:(i.2) R

- 2. 14898 0. 521033 0. 570928 0. 419977 0. 399578 0. 25792
- $1.\ 30735\ _0.\ 236935\ _0.\ 104455\ 0.\ 483214\ _0.\ 488062\ 0.\ 679155$

【Rの最大固有値と固有ベクトル、次の固有値と固有ベクトルを同時に出力している】 3 evs R

- 0. 675427 0. 534739 0. 198549 0. 401878 0. 513792 0. 499144

【「evs」は左引数で与えた個数分の固有値と固有べクトルを、大きい順に出力している】

【勤労者世帯の消費支出(Y)と可処分所得(X):テキスト表 7-3 のデータ】

X=:300+0 11 29 51 54 64 60 66 70 78 74 71 81 84 92,100+0 3 11 28 34 41 49 51 49

Y=:200+39 48 58 72 68 80 79 82 85 93 91 94,100+2 4 8 10 12 14 24 26 32 34 36 34

]b=:Y (regb=:[%.1:,.]) | 最小自乗直線の切片と勾配を出力している。 Χ 50, 8745 0, 637437 5 5\$ u=:Y-Z=:(1, X)+/.*bテキスト表 7-4 $u_t = Y_t - Y_{t-1}$ _3. 10556 _1. 11737 _2. 59123 _2. 61484 _8. 52715 1. 72411 6. 63642 8. 26206 8. 34975 7. 25025 $4.\ 15076 \quad 4.\ 23845 \quad 1.\ 13895 \quad 0.\ 30253 \ _1.\ 52209$ 0. 0158516 _3. 08364 _2. 35852 _3. 08364 _7. 08364 5 5\$ u2=:*: u 9. 64453 1. 24851 6. 71448 6. 83739 72. 7123 テキスト表 7-4 'u'₁' 8. 41881 1. 82728 4. 73668 2. 97955 1. 37914 2. 97257 44. 0421 68. 2616 69. 7183 52. 5662 17. 2288 17. 9644 1. 29722 0. 0915241 2. 31676 0. 000251273 9. 50885 5. 5626 9. 50885 50. 178 3 8\$ d=:(\}.-\}:)u 1. 9882 _ 1. 47386 _ 0. 0236088 _ 5. 91231 _ 5. 62563 _ 1. 54975 _ 0. 824621 _ 0. 450253 2. 90051 0. 549747 4. 91231 1. 62563 0. 0876897 _1. 09949 _3. 09949 0. 0876897

_4 【テキスト表 7-4 "u_t - "u_{t-1}"]

3 8\$ d2=: *:d

3. 95292 2. 17227 0. 000557374 34. 9554 31. 6477 2. 40172 0. 679999 0. 202728 8, 41293 0, 302222 24, 1308 2, 64268 0, 00768949 1, 20889 9, 60686 0, 00768949

0. 525808 0. 525808 16

9. 60686 0. 699607 3. 32924 2. 36527 9. 60686 0. 525808 0. 525808

【テキスト表 7-4 $(u_t - u_{t-1})^2$ 】

(], %/) du=: (+/d2), +/u2 164, 993, 467, 717, 0, 352762	$\sum_{t=2}^{25} (u_t - u_{t-1})^2$	$\frac{1}{2}$, $\sum_{t=1}^{25} u_t^2$, DW (ダービン・ワトソン比)
dwr=:4 :0 u=. x(1, . y.) +/ .*b=. x. %. 1, . y.	Y dwr X 0.352762	<i>DW</i> (ダービン・ワトソン)比を直接求める関数
(+/*:(}}:)u)%+/*:u		

| r=: (cor=: ([:+/}.*}:)%[:+/[:*:}:) u | 自己相関係数の推定値 0.850961 【CO変換による新しい変数】 $3 8\$ Y1=:r (mdy=:\}.@]-[*]:@])Y$ 44. 6203 46. 9617 52. 4521 36. 5386 51. 9425 40. 7309 44. 5819 45. 029 50, 4761 41, 6684 46, 3703 51, 8175 47, 0098 49, 3079 47, 904 48, 2021 48. 5002 56. 7982 50. 2886 54. 5867 51. 4809 51. 779 48. 0771 45. 779 3 8\$ X1=:r mdy X 55. 7117 64. 3511 71. 0338 55. 3127 62. 7598 50. 2502 59. 654 58. 5483 63. 1444 52. 3367 52. 7406 65. 2935 59. 7839 65. 231 66. 4233 62. 6156 68. 0627 78. 255 69. 7887 71. 6829 73. 7262 68. 9185 65. 2166 66. 9185 【コクラン・オーカット変換による新しいデータ(テキスト表 7-5)】 新しい変数のDW 比で、誤差項に系列相関はないと判断で Y1 dwr X1 きる。 2.37766 | 新しい変数の最小自乗直線]b1=:Y1 regb X1 13, 9733 0, 535125 $A1=: ({.b1})\%1-r$]B1=:{:b1 α , β に対する新しい推定値 0. 535125]r1=:cor u1=:Y-(1,.X)+/.*A1,B1 ┃ 新しい残差による ^ρ の新しい推定値 0.832879 3 8\$ Y2=:r1 mdy Y

48. 942 51. 4461 57. 1173 41. 457 56. 7885 45. 794 49. 6268 50. 1282

55, 6296 46, 9665 51, 6323 57, 1337 52, 4706 54, 8049 53, 4734 53, 8076

```
co_method=:4 :0
                                                 1 co_method Y;X
                                               0. 850961 93. 7563 0. 535125
NB. Cochrane-Orcutt method
                                                                                        2
cor=. ([:+/}.*}:)%[:+/[:*:}:
                                              co_method Y;X
mdy=. \}. @]-[*]:@]
                                                0. 850961 | 93. 7563 0. 535125
                                                                                       10
q=.,.,,
                                               0. 832879 | 92. 0731 0. 538302
b=. (u=. > \{. y.) \%. 1, . v=. > \{: y.
                                              co_method Y;X
                                                0. 850961 93. 7563 0. 535125
while. x. > #q
                                                0. 832879 | 92. 0731 | 0. 538302
  do. r=. cor u-(1, v)+/ .*b
                                                0. 828025 | 91. 5287 0. 539413
      b=. (r mdy u)%.1,.r mdy v
                                                0. 826887 | 91. 3968 0. 539686
      q=. q, r; b=. (({.b})\%1-r), {.b}
                                                0. 826629 | 91. 3667 0. 539748
                                                0.826571 91.36 0.539762
end.
                                                0. 826558 | 91. 3585 0. 539765
)
                                                0. 826556 91. 3581 0. 539766
                                                0. 826555 | 91. 3581 0. 539766
                                                0.826555 91.358 0.539766
```

Y11=:c*{.Y [X11=:(c=:%:1-*:r)*{.X	Y1=:(}.Y)-r*}:Y [X1=:(}.X)-r*}:X		
5 5\$Y2=:Y11,Y1	5 5\$X2=:X11, X1		
125. 53 44. 6203 46. 9617 52. 4521	157. 569 55. 7117 64. 3511 71. 0338		
36. 5386	55. 3127		
51. 9425 40. 7309 44. 5819 45. 029	62. 7598 50. 2502 59. 654 58. 5483		
50. 4761	63. 1444		
41. 6684 46. 3703 51. 8175 47. 0098	52. 3367 52. 7406 65. 2935 59. 7839		
49. 3079	65. 231		
47. 904 48. 2021 48. 5002 56. 7982	66. 4233 62. 6156 68. 0627 78. 255		
50. 2886	69. 7887		
54. 5867 51. 4809 51. 779 48. 0771	71. 6829 73. 7262 68. 9185 65. 2166		
45, 779	66, 9185		
【テキスト表 7-7 のデータ】			
C=: (%:1-*:r), 24\$r			
Y2 %. C, . X2			
2, 50748 0, 789166			
Y2 dwr X2			
1. 21991			