「J言語」と複素数

統計数理研究所(名誉教授) 鈴木義一郎

【「j.」Imazjinary(虚数生成) • Complex(複素数生成)】

「「」・」「imaz」「inary(虚数午放/・Comprex(複素数牛放/)					
「j」という文字を用いて、複素数「 $1+2i$ 」を「 1 j2」のように表す。					
j. 1 2 3	j.	_1 _2	「j.」という演算子に実数を入力すると、純		
0j1 0j2 0j3 j. 3j4	0j 1 j.	0j 2 _4j3		力する。つまり「j.」の片側形は、 上で時計と逆まわりで	
4j3]Z0=:3 j. 4	3j 4			12 2 1 2 2 1 2 1 2 2 2 2	
3j4	1j2 3	3 j 4	虚部にもつ複素数を生成する。		
]Z2=:3 j.>:i.			/i.2 3 4	\$&.>Z0;Z1;Z2;Z3;Z4	
3j1 3j2 3j3 3j4		1 1j1 1 _j 1j4 1j5 1		2 2 2 2 2 3 4	
]Z3=:1 2 j./	3 4 5	lj8 1j9 1j	10 1j11	#&.>Z0;Z1;Z2;Z3;Z4	
1j3 1j4 1j5				1 2 2 2 2	
2j3 2j4 2j5		 1j12 1j13 1j	14 1j15	「\$」は実数と同様に、複素数に	
		lj16 1j17 1j	18 1j19	対しても形を出力する。	
		1j20 1j21 1j	22 1j23	「#」はアイテム数を出力	

【「+」Plus(足算)。「-」Minus(引算):両側形】

	71-31-7	• 1P1151717
1j2 + 2j2	3j4 - 2j2	《複素数同士の加法と減法》
3j4	1j2	$(a+i*b)\pm(c+i*d)=(a\pm c)+i*(b\pm d)_b$

【「*| Multiply(乗算) • 「%| Devide(除算):両側形】

	Hurcipi	- 1 (木 昇 / · · · · · · · · ·	<u> </u>	121
3j _4j3	4 * 0j1	3j4 % 0j_1 4j3	j. 3j4 _4j3	「0j1」を掛けたり、「0j_1」で割ったりするのは、「j.」と同じ演算結果になる。
0j_1 4j 3	3j4 *	3j4 % 0j1 4j_3	j.^:_1(3j4) 4j_3	「0j_1」を掛けたり、「0j1」で割ったりするのは、「j.」の逆演算「j.^:_1」と同じ結果になる。
0j_1	0j1 *	1j1 * 1j_1 2	2j1 * 2j_1 5	2.44949j1 * 2.44949j_1

1				7
2.	5、7などは	は実数では分解でき;	ない素数であるが、	 複素数なら分解が可能である。

【[+.(Real/Imaginary)」と「*.(Length/Angle)」の片側形]】					
+. 3j4	+. 1j1.5708	「+.」の片側形は実数部と虚数部を出力する。			
3 4	1 1.5708	(「0.5p1」は[п/2=1.5708]である)			
*. 3j4	*.% 3j4	「*.」の片側形は、複素数の絶対値と偏角を			
5 0.927295	0.2 _0.927295	出力する。逆数の絶対値は元の複素数の絶 対値の逆数、偏角は符号が反対になる。			

【[() と「%.(Matrix-Inverse) の片側形]】					
]a=: 3j4 a + 3j4		a + 3j4	「」の片側形は、補数を出力する。		
2j 4		1	a + (a) = 1		
]b=:%. 3j	4	b * 3j4	「%.」の片側形は、アトムに対しては「%」と同じて		
0.12j 0.16		1	逆数を出力する。		
Z2]	Z5=:%.Z2	引数が行列の場合は逆行列を出力する。		
3j1 3j2] :	1.5j2 _1.5j_1	round=:3 :'j./&>1e_10<&.>+.&.> <"		
3j3 3j4	_1.5	j_1.5	у'		
	1.5j	0.5	[:>[:([:j./1e 10" <+.)L:0<"0		
Z5 +/ .*Z2			round Z5 + .*Z2		
1j3.55271e_15 3.01981e			e_14j8.88178e_15		
_2.22045e_14j2.66454e_15			1 0		
1j 1.77636e	15		0 1		

[(*(Signum) 논	$^{\lceil \%}$ (Reciprocal) $_{\mid}$ $_{\mathcal{O}}$	片側形]】
]u=:* 3j4	l u	「*」の片側形は単位円周上への射影
0.6j0.8	1	 (「 」の片側形は絶対値を出力する)
]r=:% 3j4	r * 3j4	「%」の片側形は、右引数で与えた数値の逆数
0.12j 0.16	1	を出力する

] S=:3	S 3j1	St=:3j2	
j.>:i.4		3j3	
	3j2 3j3 3j4		
3j1 3j2 3j3 3j4		3j1 3j4	
t E. S	S e. t	S(e.#[)t	
0 1 0 0	0 1 1 0	3j2 3j3	

【[*:(Double)」と「-:(Halve)」:片側形]・「-:(Match)」:両側形】
]a=:+:1j2 -: a 「+:」の片側形は右引数を 2 倍にする。

2j4 1j2 「-:」の片側形は右引数を半分にする。
b -: b=:1j2 2j4 b = b 「-:」の両側形は形まで含めて一致していれば1を出力(「+:」は複素数には不可)

	[[*:(Square)	ا کے [%:(Squar	?e-Root) の片側	形]]	
	- *: 1j1	%: 0j2	*: 2j1	%: 3j4	% : 1
	_		_		_
	O ÷ 2	1 - 1	3 - 1	2 1	∩ i 1
L	0) 2		7) 1	۷ ا ک	

【「r.」Angle(単位複素数) • Poler(極座標表示)】 r. 0 0.5p1 r. 1.5p1 2p1 右引数で与えた偏角をもった単位複素数を 1p1 出力する。 0j 1 1 1 0j1 1 0.5p1 1p1 1.5p1 2p1 (p=:0.5p1)*1 2 3 4 1.5708 3.14159 4.71239 6.28319 1.5708 3.14159 4.71239 6.28319 [0.5p1], [1p1], [1.5p1], [2p1] はそれぞれ $[\pi/2]$, $[\pi]$, $[3\pi/2]$, $[2\pi]$ 2 r. 0.5p1 2 r d 0.5p1 *.2 r.0.5p1 r m=:[:r.] 0j2 3 r_d 1p1 2 1.5708 *. 3 r.1p1 r_d=:[*r_m 3 r.1p1 (4 :'x 3 3.14159 0j1 1j1 r.0.5p1 0j1 1j1 r d 0.5p1 *. 0j1 1j1 r.0.5p1 1 3.14159 _1 _1j1 _1 _1j1 1.41421 2.35619 「r.」の両側形は片側形の結果に左引数倍(「x r.y」は「x*r.y」の演算結果と同じ)

[[^ Exponential • Power [^. Natural-Log • Logarithm]					
^b1	^.b1		「^」と「^.」は互いに逆関数である。		
^.	^		「b. 1」は左の逆関数を与える「副詞」		
]E=:^ 1j1	^.E]	L=:^.1j1	^ L	
1.46869j2.28736	1j1	0.3	46574j0.785398	1j1	
]E10=:10^1j1	10^.E10]	L10=:10^.1j1	10 ^ L10	
6.68202j7.4398	1j1	0.1	50515j0.341094	1j1	
m=:1 2 3 4	*.Z		(%:2) ^m		
]z=:1j1 ^ m	1.41421 0.785398		1.41421 2 2.82843 4		
1j1 0j2 _2j2 _4	2 1.5708		0.25p1*m		
	2.82843 2.356	19	0.785398 1.5708 2.35619 3.14159		
	4 3.141	59			

[[i:]]

test1 2 5 test2	2 (test2*test1) 2 5	test1=:2:*%/
0.8		.8 1.6		test2=:i.@>:@{.
0 1 2				
0 1 2 2*2%5 i.>:	1.2	({test2*t	testl	[1] 1月300 文亦已
0.8				とる(「>:」は1増)
0 1 2	2 1	.2 0.4		
line=:(],-@ .)@unit[unit=:{.	-i.@>:@{.*2:	:*%/	「 」:絶対値をとる
]u=:unit 2 . u		-@ . u		「+・」: 実部・虚部を出力
5				「-:」:数値を半分に
2 1.2 0.4 0.4 1.2	2 2	0.4 1.2	2	「「・」: 全要素の反転
(],-@ .)u	line	2 5		[.^:1]=[.]
2 1.2 0.4 _0.4 _1.2 _2	2 1.2	0.4 _0.4 _	_1.2	
]c=:3 :'line r=:+.y.	' 2j5	∹1+*{.r		.^:1 c
2 1.2 0.4 0.4 1.2 2		1	2	1.2 0.4 0.4 1.2 2
2 1.2 0.4 0.4 1.2 2]d=:3 :'line r=:+.y.	'_2j5	-:1+*{.r		1.2 0.4 0.4 1.2 2 .^:0 d
			2 1	.2 0.4 0.4 1.2 2
2 1.2 0.4 0.4 1.2 2 icolon=:3 :0		U		「i:」は虚数部が正の整数以
				外に対しては domain
if.0=((><.)+:(<0:)){:+	.y.do.'d	omain error	1	errorとなる。
else. .^:(-:1+*{.r)lin	e r=.+.y	.end.		01101 C 0 \$0
)				
icolon 2j5	icolo	on _2j5		「i:a+ib」はa>0 なら
_2 _1.2 _0.4 0.4 1.2	2 1.2	0.4 0.4	1.2	(-a)から(a)まで(2a/b)
2	2	_~~_	· -	の間隔の数列を生成 (a<0
i: 2j5	i: _2	 2j5		なら逆順)。
	_	0.4.0.1	1 0	
_2 _1.2 _0.4 0.4 1.2	2 1.2	0.4 _0.4 _	_1.2	
2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	ナーナフを主料い	٠ ا	7. 目目米/~
「icoron」は"i:"を使わっ	別し働き	どう る 俊 奈 級 に	- 灯する	2))))))
演算子「i:」の片側形は、虚	数部が正整	数の場合にのみ	,作動	する。

[[?] Roll. [?] Deal]

]r=:? 2 5 \$ 10	j./ r	「?」の片側形は重複を許
3 0 7 5 8	3j9 0j4 7j4 5 8j3	した整数乱数を10個出
9 4 4 0 3		力し、2個を対にして5
]r=:_5 + ? 2 5 \$	j./ r	個の複素数乱数を出力。
10		
	2j_2 _4j_5 0j_4 0j_1	
2 _4 0 0 3	3j_1	
2 5 4 1 1		
]r=:2 5 \$ _5+10 ?	j./r	「?」の両側形は重複を許
10	1j4 _3j2 _2 _5j1 3j_4	さぬ整数乱数を出力する。
_1 _3 _2 _5 3		
4 2 0 1 4		

```
【「+.」GCD(最大公約数) • 「*.」MCD(最小公倍数)】
   complex=:3 :0
                                             complex 1
r=.j.^{:}(i.4)y+h=.0
                                           1 0 i 1 0 i 1 1
                                             complex 2
while.h<<.-:y
  do.s=.j.^:(i.4)j./h,y-h=.h+1
                                             <u>lj l ljl 0j 2 0j2 lj l ljl 2</u> 3 4 $ complex 3
    r=.r, \sim .s, j.^: (i.4) j./(-h), y-h
                                             _3 _2j_1 _2j1 _1j_2
end.
/:~r
                                           1j2 2j 1 2j1
  less=:3 :'/:~;complex&.><"0}.i.>:y'
  2 12 $ less 3
 _3 _2j_1 _2 _2j1 _1j_2 _1j_1 _1 _1j1 _1j2 0j_3 0j_2 0j_1
0j1 0j2 0j3 1j 2 1j 1 1 1j1 1j2 2j 1 2 2j1 3
```

```
min=:[:<./[:+/@+.&>;
                                     2j1 min 3j4
  int=: (2:=[:+/0:=]-<.) "1@+."0
                                     (int#])2j1 2j1.5 3j3.5 3j4
  com d=:4 :0
Z=.less x min y
                                  2j1 3j4
(X=.(int x%Z)#Z);Y=.(int y%Z)#Z
                                     ]Z=:2j1 com_d 3j4
                                  _2j_1 _1 _1j2 0j_1 0j1 1j_2 1 2j1
/:\sim\sim.((X e.Y) #X), (Y e.X) #Y
                                     2j1 + . 3j4
                                  2j1
NB. <u>左右の引数の公約数のセットを出力</u>
  6 com d 8
2 1j 1 1 1j1 0j 2 0j 1 0j1 0j2 1j 1 1 1j1 2
```

```
4 5 $ 2j1 com_m 3j4
  com m=:4 :0
                          _11j2 _10j_5 _8j6 _7j_1 _6j_8
h=. (+/|+.x)>.+/|+.y
                          t = . \{ (a = .x * c); b = .y * c = .less h
/:~;(1=,a=/b) #, {.L:0 t}
                          1j_7 2j11 3j4 4j_3 5j_10
                                 7j1 8j_6 10j5 11j_2
                           6j8
  1j1 com m 3j4
                            2j1 *. 3j4
_7j_1 _1j7 1j_7 7j1
                          3ј4
 1j1 *. 3j4
 6 com m 8
48 24j 24 24 24j24 0j 48 0j 24 0j24 0j48 24j 24 24 24j24 48
```

【複素数演算と2次元平面上の一次変換】

複素数演算	一次変換の行列	行列計算	コメント
(*&1) 3j4]E=:2 2 \$ 1 0 0	E (mp=:+/ .*)3	
	1	4	
3j4			恒等変換
	1 0	3 4	, , , , , , ,
	0 1		
(*&2)3j4]E2=:2*E	E2 mp 3 4	
6j8	2 0	6 8	相似変換
	0 2		

+ 3j4]X=:2 2 \$ 1 0 0	X mp 3 4	実軸(横軸)に関して
3j_4		3 _4	対称変換する。
	1 0		
	0 1		
-&+ 3j4] Y=:-X	Y mp 3 4	虚軸(縦軸)に関して
_3j4	_1 0	_3 4	対称変換する。
	0 1		
.&.+. 3j4] LX=:E	LX mp 3 4	直線「 <i>y = x</i> 」に関し
4j3	0 1	4 3	て対称変換する。
	1 0		
+&j. 3j4] LY=:-LX	LY mp 3 4	直線「 <i>y = - x</i> 」に関し
_4j_3	0 _1	_4 _3	て対称変換する。
	1 0		

j. 3j4]R90=:2 2 \$ 0 _1 1 0	R90 mp 3	(<i>a</i> , <i>b</i>)を平面上で 90度回転する。
_4j3	0 _1	_4 3	
	1 0		
(j.^:2)3j4]R180=:-E	R180 mp 3	(a,b)を平面上で
_3j_4	_1 0		180 度回転する。
	0 1	3 4	
(j.^:_1)3j4]R_90=:-R90	R_90 mp 3	(<i>a</i> , <i>b</i>)を平面上で時
4j 3	0 1		計回りに 90 度回転。

	1 0	4 3	
(+/,{.)&.+.3j4]P=:2 2 \$ 1 1 1 0	P mp 3 4	(a,b)を (a+b,b)に
7j3	1 1	7 3	変換
	1 0		

【 3 点 A = (4,3) , B = (1,0) , C = (7,0) で与えられる三角形の重心の位置を求める問題】

T=:4j3;1;7	gpoint T	\triangle ABC の位置を複素数で表示して「T」という
<pre>gpoint=:+/@:>%3:</pre>	 4j1	変数に入力。「gpoint」は重心を求める関数

【7点一致の問題:任意の四角形ABCDに対して、次の7つの点が全て一致する】

- ① 辺ABの中点と辺CDの中点を結ぶ線分の中点:P1
- ② 辺BCの中点と辺DAの中点を結ぶ線分の中点:P2
- ③ 対角線ACの中点と対角線BDの中点を結ぶ線分の中点: P3
- ④ 三角形ABDの重心と頂点Cとを結ぶ線分を1:3に分ける点:P4
- ⑤ 三角形ABCの重心と頂点Dとを結ぶ線分を1:3に分ける点:P5
- ⑥ 三角形BCDの重心と頂点Aとを結ぶ線分を1:3に分ける点:P6
- ⑦ 三角形ACDの重心と頂占Cとを結ぶ線分を1・3に分ける占・P7

<u> </u>		<u> ター:3に分ける息:「 / </u>	
'A B C D'=:4j8;6j6;8;0		四角形ABCDを複素数値で与える。	
mpt=:[:-:[:+/>	「mpt」は中点を与]P1=:mpt(mpt A;B);mpt C;D	
	える関数		
div4=:[:+/4:%~]*1:,3:		4.75j3.5	
]P2=:mpt(mpt B;C);mpt D;A] P3=:mpt(mpt C; A); mpt B; D	
4.75j3.5		4.75j3.5	
]P4=:div4 C,gpoint A;B;D]P5=:div4 D,gpoint A;B;C	
4.5j3.5		4.5j3.5	
]P6=:div4 A,gpoint B;C;D]P7=:div4 B,gpoint A;C;D	
4.5j3.5		4.5j3.5	